Interactions and stress relaxation in monolayers of soft nanoparticles at fluid-fluid interfaces.

نویسندگان

  • Valeria Garbin
  • Ian Jenkins
  • Talid Sinno
  • John C Crocker
  • Kathleen J Stebe
چکیده

Nanoparticles with grafted layers of ligand molecules behave as soft colloids when they adsorb at fluid-fluid interfaces. The ligand brush can deform and reconfigure, adopting a lens-shaped configuration at the interface. This behavior strongly affects the interactions between soft nanoparticles at fluid-fluid interfaces, which have proven challenging to probe experimentally. We measure the surface pressure for a stable 2D interfacial suspension of nanoparticles grafted with ligands, and extract the interaction potential from these data by comparison to Brownian dynamics simulations. A soft repulsive potential with an exponential form accurately reproduces the measured surface pressure data. A more realistic interaction potential model is also fitted to the data to provide insights into the ligand configuration at the interface. The stress of the 2D interfacial suspension upon step compression exhibits a single relaxation time scale, which is also attributable to ligand reconfiguration.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compression of hard core-soft shell nanoparticles at liquid-liquid interfaces: influence of the shell thickness.

Soft hydrogel particles show a rich structural and mechanical behaviour compared to hard particles, both in bulk and when confined in two dimensions at a fluid interface. Moreover, encapsulation into hydrogel shells makes it possible to transfer the tunability of soft steric interactions to hard nanoparticle cores, which bear interest for applications, e.g. in terms of optical, magnetic and rei...

متن کامل

A multiscale approach to the adsorption of core-shell nanoparticles at fluid interfaces.

Self-assembly of colloidal particles at liquid-liquid interfaces is a process with great potential for the creation of controlled structures, due to the trapping of the particles in the plane of the interface combined with their lateral mobility. Here we present a multiscale characterisation of the adsorption and interfacial behaviour of core-shell iron oxide-poly(ethylene glycol) nanoparticles...

متن کامل

Active microrheology and simultaneous visualization of sheared phospholipid monolayers

Two-dimensional films of surface-active agents-from phospholipids and proteins to nanoparticles and colloids-stabilize fluid interfaces, which are essential to the science, technology and engineering of everyday life. The 2D nature of interfaces present unique challenges and opportunities: coupling between the 2D films and the bulk fluids complicates the measurement of surface dynamic propertie...

متن کامل

Lateral stress relaxation and collapse in lipid monolayers.

Surfactants at air/water interfaces are often subjected to mechanical stresses as the interfaces they occupy are reduced in area. The most well characterized forms of stress relaxation in these systems are first order phase transitions from lower density to higher density phases. Here we study stress relaxation in lipid monolayers that occurs once chemical phase transitions have been exhausted....

متن کامل

Dynamic Organization of Ligand-Grafted Nanoparticles during Adsorption and Surface Compression at Fluid–Fluid Interfaces

Monolayers of ligand-grafted nanoparticles at fluid interfaces exhibit a complex response to deformation due to an interplay of particle rearrangements within the monolayer, and molecular rearrangements of the ligand brush on the surface of the particles. We use grazing-incidence small-angle X-ray scattering (GISAXS) combined with pendant drop tensiometry to probe in situ the dynamic organizati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review letters

دوره 114 10  شماره 

صفحات  -

تاریخ انتشار 2015